SAULT COLLEGE

of APPLIED ARTS and TECHNOLOGY

Sault Ste. Marie

COURSE OUTLINE

revised February 1978 by J. Wiskin

FOREST MENSURATION

Text:

Natural Resources Measurements - by T. E. Avery

General Objectives:

to provide the student with a foundation in measurement principles and techniques applicable to measurement problems in forestry.

- I. Review of selected metric (SI and Derived) units and ratios.
- II. Measurement of the standing tree
 - Diameter the basic importance of tree diameter measurement is that it is one of the directly measurable variables from which cross-sectional area and volume can be computed.
 - (a) Diameter measuring techniques:
 - definitions and location of dbh
 - diameters for irregular trees
 - diameter class midpoints
 - diameter class limits
 - diameter inside and outside bark
 - (b) Basal area
 - derivation of cross-sectional area
 - (c) Relationship of tree-stem and tree-crown diameters for aerial volume tables.
 - (d) Instrument for measuring diameter
 - description and method of calibration
 - correct use of the instruments
 - comparison of instruments, advantages and disadvantages.
 - (i) Tree calipers
 - (ii) Diameter tape
 - (iii) Biltmore stick
 - (iv) Upper-stem dendrometers Speigel Relaskop

- Wheeler Pentaprism

- Height the basic importance of tree height measurement is that it is one of the directly measurable variables from which volume can be computed.
 - (a) definition of total and merchantable height, height class
 - (b) height measuring techniques

- measurement of leaning trees

- (c) Instruments for measuring heights of trees (hypsometers)
 - (i) Hypsometers based on trigonometric principles:

Abney hand level Haga Altimeter Suunto Clinometer Speigel Relastop

- -Derivation of formulae for degree scale, percent scale and topographic scale.
- -Correct use of the instruments in the field
- -Comparison of instruments, advantages and disadvantages.

(ii) Hypsometers based on geometric principles
 (similar triangles)

Staff Hypsometers Merritt hypsometers

-method of calibration
-correct use of the instruments
-comparison of instruments, advantages and disadvantages.

3. Maps and Field Notes

<u>Maps</u> - (a) Introduction - importance of maps and various types of maps related to forestry

- (b) Essential map components title, scale, true and magnetic meridians, legend, other
- (c) Measurement of length and area
- (d) Types of Map scales statement, ratio, representative fraction, bar scale

(e) Determination of area from maps of various scales - planimeter, det grid, line transect, squared paper Field Notes

- (a) the purpose, requirements and essentials of good field notes
- (b) field mapping techniques
- (c) tally sheets purpose, essentials and techniques

IV. Timber Cruising

An introduction to timber cruising as a sampling process

- (a) reasons for sampling
- (b) sampling terminology
- (c) types of sample units fixed area sample units strips and plots - variable - area sample units - point sampling
- (d) intensity of sample
- (e) application of sampling techniques in the field and methods of compilation and presentation of field data:
 - compassing
 - chaining
 - tree measurement
 - tallying
 - mapping
 - compilations stand and stock tables, volume per unit area, total stand volume
 - forest stand map

PROPOSED SCHEDULE

FOR 109-3-4

Semester 2, January 9 - April 28, 1977

Week	Lecture	Lab
1	Introduction of Course	Metric System Review Tree Diameters - Instruments
2	Tree Heights - Instruments Based on Right Triangles	Tree Heights - insturments
3	Tree Heights - Instruments Based on similar triangles	Tree Heights - instruments
4	Tree Diameter and Height Review	Field - Tree Diameter and Height
5	Theory Test - Tree Dia- meter and Height	<u>Field Test</u> - Tree Diameter and Height
6	Field Notes	Field Mapping - Conventional Signs and Forest Cover Legends
7	Field Notes	Timber Cruise - organization
8	WINTER	BREAK
9	Timber Cruising	Field - Demonstration Cruise
10	Timber Cruising	<u>Field</u> - all day cruise
11	Timber Cruising	Area Determination
12	Volume Tables	Cruise Compilation
13	Review	Map - Pantograph, lettering
14	Theory Test	Cruise Compilation and map
15	Wedge Prism-Theory	Wedge Prism-Field
16	Rewrites	Rewrites